Предмет:
Тема:
Динамика вращательного движения
Вопрос:
Диск может вращаться вокруг оси, перпендикулярной плоскости диска и проходящей через его центр. К нему прикладывают одну из сил (, , или ), лежащих в плоскости диска и равных по модулю.
Верным для угловых ускорений диска является соотношение …
Ответы:
+ ,
−
−
−
Решение:
Согласно основному уравнению динамики вращательного движения твердого тела относительно неподвижной оси угловое ускорение равно: . Отсюда следует, что угловое ускорение прямо пропорционально моменту приложенной к диску силы, который, в свою очередь, прямо пропорционален величине плеча силы (при условии равенства модулей сил). Таким образом, , , так как плечо силы равно нулю, и поэтому момент силы равен нулю.
ответ тест i-exam
ответ тест i-exam